Domain-adversarial Network Alignment
نویسندگان
چکیده
منابع مشابه
Domain Adaptation for Relation Extraction with Domain Adversarial Neural Network
Relations are expressed in many domains such as newswire, weblogs and phone conversations. Trained on a source domain, a relation extractor’s performance degrades when applied to target domains other than the source. A common yet labor-intensive method for domain adaptation is to construct a target-domainspecific labeled dataset for adapting the extractor. In response, we present an unsupervise...
متن کاملAdversarial Image Alignment and Interpolation
Volumetric (3d) images are acquired for many scientific and biomedical purposes using imaging methods such as serial section microscopy, CT scans, and MRI. A frequent step in the analysis and reconstruction of such data is the alignment and registration of images that were acquired in succession along a spatial or temporal dimension. For example, in serial section electron microscopy, individua...
متن کاملUse of Generative Adversarial Network for Cross-Domain Change Detection
This paper addresses the problem of cross-domain change detection from a novel perspective of image-to-image translation. In general, change detection aims to identify interesting changes between a given query image and a reference image of the same scene taken at a different time. This problem becomes a challenging one when query and reference images involve different domains (e.g., time of th...
متن کاملConditional Adversarial Domain Adaptation
Adversarial learning has been successfully embedded into deep networks to learn transferable features for domain adaptation, which reduce distribution discrepancy between the source and target domains and improve generalization performance. Prior domain adversarial adaptation methods could not align complex multimode distributions since the discriminative structures and inter-layer interactions...
متن کاملDomain-Adversarial Neural Networks
We introduce a new representation learning algorithm suited to the context of domain adaptation, in which data at training and test time come from similar but different distributions. Our algorithm is directly inspired by theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on a data representation that cannot discriminate bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2020
ISSN: 1041-4347,1558-2191,2326-3865
DOI: 10.1109/tkde.2020.3023589